Two gamma bands? Or two gamma complex ensembles?

In our newest preprint on BioRxiv, in collaboration with Alessandro Torcini and Matteo di Volo, we revisit a classic theory about the existence of two different gamma rhythms in the hippocampus CA1. We first deconstruct this theory, showing its insufficiency to account for the haphazard diversity of hippocampal gamma. We however reconstruct and rescue theLire la suite “Two gamma bands? Or two gamma complex ensembles?”

Densely tied in space… but also for a sufficient time!

Functional interactions between brain regions or neurons have been described using features defined in network theory. For instance, the rich club phenomenon correspond to having high-degree nodes connected between them above chance-level. In our new Nature Physics paper we generalize this notion to dynamic networks. Indeed, in order for a certain spatial pattern in networkLire la suite “Densely tied in space… but also for a sufficient time!”

Graph-based features to capture the embodiment of adaptive behavior

The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. In our recent Nature Communications paper (in collaboration with Philippe Isope’s group at INCI, Strasbourg), we studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulationLire la suite “Graph-based features to capture the embodiment of adaptive behavior”

The speed and geometry of resting state dynamic Functional Connectivity

We are happy announcing that a diptych of publications on resting dynamic Functional Connectivity is finally out on NeuroImage! Functional Connectivity (FC) measured on resting state fMRI is dynamic and continually reconfiguring. However these variations are not necessarily very large and discrete state transitions are difficult (or questionable) to identify. Here we introduce a newLire la suite “The speed and geometry of resting state dynamic Functional Connectivity”

Computing hubs and states in the hippocampus?

In dominant views, a neuron becomes a functional hub because of its special position within a circuit. In our recently accepted paper on Science Advances, we find experimental evidence supporting a much more democratic view in which almost a majority of recorded single units could serve as hub at least for some time and forLire la suite “Computing hubs and states in the hippocampus?”

AD before plaques

Alzheimer’s disease (AD) is a neurodegenerative pathology commonly characterized by a progressive and irreversible deterioration of cognitive functions, especially memory. Although the etiology of AD remains unknown, a consensus has emerged on the amyloid hypothesis, which posits that increased production of soluble amyloid b (Ab) peptide induces neuronal network dysfunctions and cognitive deficits. In ourLire la suite “AD before plaques”

Theta-gamma coupling as “Eureka”?

Spatial reference memory in rodents represents a unique opportunity to study brain mechanisms responsible for encoding, storage and retrieval of a memory. Even though its reliance on hippocampal networks has long been established, the precise computations performed by different hippocampal subfields during spatial learning are still not clear. In our Cerebral Cortex paper, to studyLire la suite “Theta-gamma coupling as “Eureka”?”